

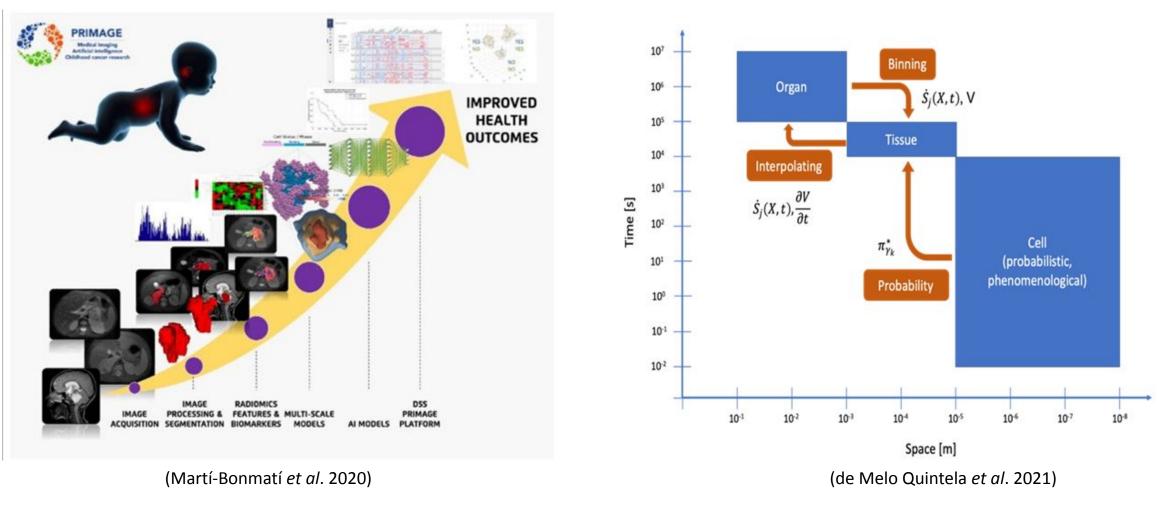
6 - 7 September 2021 | Sheffield, UK

The First Multi-Cellular Model of Neuroblastoma

K. Y. Wertheim, R. Chisholm, P. Richmond, D. Walker

University of Sheffield, Sheffield, South Yorkshire S10 2TN

k.wertheim@sheffield.ac.uk

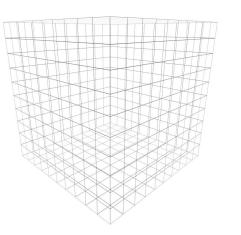


PRIMAGE

Medical imaging Artificial intelligence Childhood cancer research

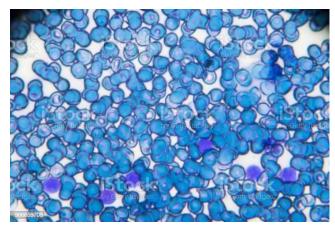
Horizon 2020 European Union Funding for Research & Innovation

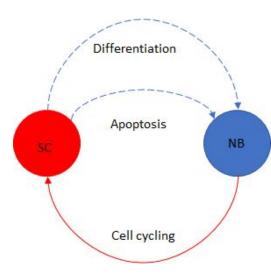
Decision support system for the clinical management of malignant solid tumours.


- 1. Image acquisition, processing, and segmentation.
- 2. Integrate radiomic features with other biomarkers, such as mutations and histology.
- 3. Multiscale models: organ/tumour, tissue, and intracellular.
- 4. Machine learning techniques extract insights from simulation results.


(Louis and Shohet 2015)

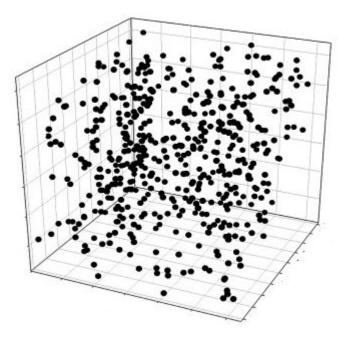
Context: neuroblastoma.


- Most common extracranial solid tumour of childhood.
- 15 % of cancer-related deaths in children.
- Primary tumour site, usually adrenal medulla.
- < 50 % survival rate in high-risk cases.



- Part 1: continuous automaton.
- Voxelate the tumour microenvironment.
- Spatial distributions of cells and matrix.
- Oxygen, nutrients, and chemotherapeutic drugs (uniform).
- Inflammation (uniform).

(Pathmanathan et al. 2009)

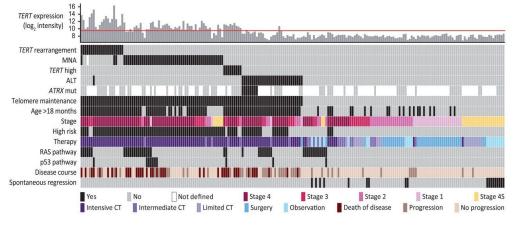


Part 2: discrete agents.

- Neuroblasts and Schwann cells.
- Mutations and gene expression levels.
- DNA status (short telomeres, unreplicated, and generic damage).
- Cell cycling (proliferation and division).
- Cell death (apoptosis and necrosis).

Part 3: centre-based mechanical model.

- Cell migration resolves cell-cell overlap.
- Boundary conditions and matrix abundance.



Latin hypercube sampling.

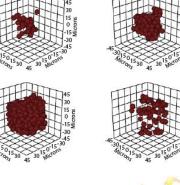
- 20 fitting parameters.
- 3000 parametric combinations.

Data aggregated from different sources.

- Clinical outcomes associated with different mutations.
- Cell death triggered by hypoxia.
- Growth kinetics.
- Clinical outcomes and cell behaviours associated with different histologies.

(Ackermann et al. 2018)

	Three-stage fit	95% CI	Direct fit	95% CI
Maximum oxygen consumption rate, q_{max} (mmHg · s ⁻¹)	17.5	<mark>15.3–25.1</mark>	16.3	15.3-17.9
PO2 for 50% drop in consumption, P50.g (mmHg)	2.7	0.0-12.5	1.6	1.2-2.1
Maximum misonidazole binding rate, $k_{b,0} (\times 10^{-4} \text{ s}^{-1})$	4.5	3.9-4.9	4.4	2.5-5.3
PO2 for 50% drop in binding, P50,b (mmHg)	1.4	0.3-2.6	1.4	1.1-2.5
PO2 for 50% necrosis, P50,n (mmHg)	1.2	0.1-4.9	1.0	0.4-1.2


$\frac{90}{100}$

(Ambros *et al*. 2001)

High-Performance computing.

- Millions of cells in > 4 months.
- 50 *runs* per configuration.
- 3000 parametric combinations tested in around 20 studies.
- Simulations on GPUs enabled by FLAMEGPU.

(Warren and Partridge 2016)

AGE OF CULTURE (HOURS

(Tumilowicz et al. 1970)

References

Ackermann S, Cartolano M, Hero B, Welte A, Kahlert Y, Roderwieser A, Bartenhagen C, Walter E, Gecht J, Kerschke L, Volland R. A mechanistic classification of clinical phenotypes in neuroblastoma. *Science*. 2018 Dec 7;362(6419):1165-70.

Ambros IM, Attarbaschi A, Rumpler S, Luegmayr A, Turkof E, Gadner H, Ambros PF. Neuroblastoma cells provoke Schwann cell proliferation *in vitro*. *Medical and Pediatric Oncology: The Official Journal of SIOP—International Society of Pediatric Oncology (Societé Internationale d'Oncologie Pédiatrique)*. 2001 Jan 1;36(1):163-8.

de Melo Quintela B, Hervas-Raluy S, Garcia-Aznar JM, Walker D, Wertheim KY, Viceconti M. A Theoretical Analysis of the Scale Separation in a Model to Predict Solid Tumour Growth. *Journal of Theoretical Biology*. 2021. Manuscript under review.

Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annual review of medicine. 2015 Jan 14;66:49-63.

Martí-Bonmatí L, Alberich-Bayarri Á, Ladenstein R, Blanquer I, Segrelles JD, Cerdá-Alberich L, Gkontra P, Hero B, García-Aznar JM, Keim D, Jentner W. PRIMAGE project: predictive *in silico* multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. *European radiology experimental*. 2020 Dec;4(1):1-1.

Pathmanathan P, Cooper J, Fletcher A, Mirams G, Murray P, Osborne J, Pitt-Francis J, Walter A, Chapman SJ. A computational study of discrete mechanical tissue models. *Physical biology*. 2009 Apr 15;6(3):036001.

Tumilowicz JJ, Nichols WW, Cholon JJ, Greene AE. Definition of a continuous human cell line derived from neuroblastoma. *Cancer research*. 1970 Aug 1;30(8):2110-8.

Warren DR, Partridge M. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study. *Physics in Medicine & Biology*. 2016 Nov 23;61(24):8596.