

A Scale Separation Approach Applied to a Mathematical Model of Solid Tumour Growth

Barbara de Melo Quintela,

Silvia Hervas-Raluy, Jose Manuel Garcia-Aznar, Dawn Walker, Kenneth Y Wertheim, Marco Viceconti

PRIMAGE Project

- PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers
- Patient specific models of the tumour growth to personalize treatment
 - Neuroblastoma (NB) Most frequent solid tumour outside of the brain in children

(Martí-Bonmatí et al. 2020)

Continuous Model - Tumour growth and chemotherapy outcome

Motivation

Question

How to separate the scales?

Definition of scale

- **Grain** which is the largest value between the lower limit of spatial/temporal resolution allowed by instrumentation, and the smallest/fastest feature of interest.
- Extent the smallest value between the upper limit of spatial/temporal resolution and the size of the largest/slowest feature to be observed.

$$\begin{cases} \boldsymbol{\pi}_{\boldsymbol{\gamma}_{k}}^{*}(\boldsymbol{k}(\boldsymbol{X}),\boldsymbol{T}_{l},\boldsymbol{t}) = \boldsymbol{\pi}_{\boldsymbol{\gamma}_{k}}(\boldsymbol{I}_{k},\boldsymbol{\alpha}_{k},\boldsymbol{\tau}_{k},\boldsymbol{S}_{1},\dots,\boldsymbol{S}_{J},\boldsymbol{t}) \cdot \boldsymbol{\pi}_{\boldsymbol{\gamma}_{k}}^{treat}(\boldsymbol{T}_{l}) & (1) \\ r_{i}^{dV_{X}}(\boldsymbol{X},t) = \frac{dc_{i}^{dV_{X}}(\boldsymbol{X},\boldsymbol{S}_{1},\dots,\boldsymbol{S}_{J},t)}{dt} \\ \dot{\boldsymbol{S}}_{j}(\boldsymbol{X},t) = \sum_{k}^{N \in dV_{X}} \boldsymbol{\chi}_{k}^{j}(\boldsymbol{I}_{k},\boldsymbol{\alpha}_{k},\boldsymbol{\gamma}_{k},\boldsymbol{\tau}_{k},t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(\boldsymbol{I}_{k},\boldsymbol{\alpha}_{k},\boldsymbol{\gamma}_{k},\boldsymbol{\tau}_{k},t) \\ r_{i}^{dV_{X}}(\boldsymbol{X},t) = f_{p}^{i,a}(\boldsymbol{X},t) - f_{d}^{i,a}(\boldsymbol{X},t) = \frac{dC_{i}^{dV_{X}}(\boldsymbol{X},t)}{dt} \\ \frac{\partial C_{i}^{dV_{X}}(\boldsymbol{X},t)}{\partial t} + \nabla \cdot \left(C_{i}^{dV_{X}}(\boldsymbol{X},t)\frac{\partial u(\boldsymbol{X},t)}{\partial t}\right) = r_{i}^{dV_{X}} \\ \frac{\partial V}{\partial t} = k^{ia} \left(\frac{\partial C^{V}}{\partial t}\right) = k^{ia} \left(\frac{\partial C^{V}_{S}}{\partial t} + \frac{\partial C^{V}_{n}}{\partial t}\right), \end{cases}$$

STUD DU DU DU DU

Single Scale Infinite Resolution Mathematical Model

$$\begin{cases} \pi_{\gamma_{k}}^{*}(k(X), T_{l}, t) = \pi_{\gamma_{k}}(I_{k}, \alpha_{k}, \tau_{k}, S_{1}, \dots, S_{J}, t) \cdot \pi_{\gamma_{k}}^{treat}(T_{l}) & (1) \\ r_{i}^{dV_{X}}(X, t) = \frac{dc_{i}^{dV_{X}}(X, S_{1}, \dots, S_{J}, t)}{dt} \\ \dot{S}_{j}(X, t) = \sum_{k}^{N \in dV_{X}} \chi_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) \\ r_{i}^{dV_{X}}(X, t) = f_{p}^{i,a}(X, t) - f_{d}^{i,a}(X, t) = \frac{dC_{i}^{dV_{X}}(X, t)}{dt} \\ \frac{\partial C_{i}^{dV_{X}}(X, t)}{\partial t} + \nabla \cdot \left(C_{i}^{dV_{X}}(X, t)\frac{\partial u(X, t)}{\partial t}\right) = r_{i}^{dV_{X}} \\ \frac{\partial V}{\partial t} = k^{ia}\left(\frac{\partial C^{V}}{\partial t}\right) = k^{ia}\left(\frac{\partial C_{s}^{V}}{\partial t} + \frac{\partial C_{n}^{V}}{\partial t}\right), \end{cases}$$

$$\begin{cases} \pi_{\gamma_{k}}^{*}(k(X), T_{l}, t) = \pi_{\gamma_{k}}(I_{k}, \alpha_{k}, \tau_{k}, S_{1}, \dots, S_{J}, t) \cdot \pi_{\gamma_{k}}^{treat}(T_{l}) & (1) \\ r_{l}^{dV_{X}}(X, t) = \frac{dc_{l}^{dV_{X}}(X, S_{1}, \dots, S_{J}, t)}{dt} \\ \dot{S}_{j}(X, t) = \sum_{k}^{N \in dV_{X}} \chi_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) \\ r_{l}^{dV_{X}}(X, t) = f_{p}^{i,a}(X, t) - f_{d}^{i,a}(X, t) = \frac{dC_{l}^{dV_{X}}(X, t)}{dt} \\ \frac{\partial C_{l}^{dV_{X}}(X, t)}{\partial t} + \nabla \cdot \left(C_{l}^{dV_{X}}(X, t)\frac{\partial u(X, t)}{\partial t}\right) = r_{l}^{dV_{X}} \\ \frac{\partial V}{\partial t} = k^{ia}\left(\frac{\partial C^{V}}{\partial t}\right) = k^{ia}\left(\frac{\partial C_{s}^{V}}{\partial t} + \frac{\partial C_{n}^{V}}{\partial t}\right), \end{cases}$$

$$\begin{cases} \pi_{\gamma_{k}}^{*}(k(X), T_{l}, t) = \pi_{\gamma_{k}}(I_{k}, \alpha_{k}, \tau_{k}, S_{1}, \dots, S_{J}, t) \cdot \pi_{\gamma_{k}}^{treat}(T_{l}) & (1) \\ r_{i}^{dV_{X}}(X, t) = \frac{dc_{i}^{dV_{X}}(X, S_{1}, \dots, S_{J}, t)}{dt} \\ \dot{S}_{j}(X, t) = \sum_{k}^{N \in dV_{X}} \chi_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) \\ \mathbf{r}_{i}^{dV_{X}}(X, t) = \mathbf{f}_{p}^{i,a}(X, t) - \mathbf{f}_{d}^{i,a}(X, t) = \frac{dC_{i}^{dV_{X}}(X, t)}{dt} \\ \frac{\partial C_{i}^{dV_{X}}(X, t)}{\partial t} + \nabla \cdot \left(C_{i}^{dV_{X}}(X, t)\frac{\partial u(X, t)}{\partial t}\right) = r_{i}^{dV_{X}} \\ \frac{\partial V}{\partial t} = k^{ia} \left(\frac{\partial C^{V}}{\partial t}\right) = k^{ia} \left(\frac{\partial C_{s}^{V}}{\partial t} + \frac{\partial C_{n}^{V}}{\partial t}\right), \end{cases}$$

STUDIORUM

Single Scale Infinite Resolution Mathematical Model

$$\begin{cases} \pi_{\gamma_{k}}^{*}(k(X), T_{l}, t) = \pi_{\gamma_{k}}(I_{k}, \alpha_{k}, \tau_{k}, S_{1}, \dots, S_{J}, t) \cdot \pi_{\gamma_{k}}^{treat}(T_{l}) & (1) \\ r_{i}^{dV_{X}}(X, t) = \frac{dc_{i}^{dV_{X}}(X, S_{1}, \dots, S_{J}, t)}{dt} \\ \dot{S}_{j}(X, t) = \sum_{k}^{N \in dV_{X}} \chi_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) \\ r_{i}^{dV_{X}}(X, t) = f_{p}^{i,a}(X, t) - f_{d}^{i,a}(X, t) = \frac{dC_{i}^{dV_{X}}(X, t)}{dt} \\ \frac{\partial C_{i}^{dV_{X}}(X, t)}{\partial t} + \nabla \cdot \left(C_{i}^{dV_{X}}(X, t)\frac{\partial u(X, t)}{\partial t}\right) = r_{i}^{dV_{X}} \\ \frac{\partial V}{\partial t} = k^{ia}\left(\frac{\partial C^{V}}{\partial t}\right) = k^{ia}\left(\frac{\partial C_{s}^{V}}{\partial t} + \frac{\partial C_{n}^{V}}{\partial t}\right), \end{cases}$$

$$\begin{cases} \pi_{\gamma_{k}}^{*}(k(X), T_{l}, t) = \pi_{\gamma_{k}}(I_{k}, \alpha_{k}, \tau_{k}, S_{1}, \dots, S_{J}, t) \cdot \pi_{\gamma_{k}}^{treat}(T_{l}) & (1) \\ r_{i}^{dV_{X}}(X, t) = \frac{dc_{i}^{dV_{X}}(X, S_{1}, \dots, S_{J}, t)}{dt} \\ \dot{S}_{j}(X, t) = \sum_{k}^{N \in dV_{X}} \chi_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(I_{k}, \alpha_{k}, \gamma_{k}, \tau_{k}, t) \\ r_{i}^{dV_{X}}(X, t) = f_{p}^{i,a}(X, t) - f_{d}^{i,a}(X, t) = \frac{dC_{i}^{dV_{X}}(X, t)}{dt} \\ \frac{\partial C_{i}^{dV_{X}}(X, t)}{\partial t} + \nabla \cdot \left(C_{i}^{dV_{X}}(X, t)\frac{\partial u(X, t)}{\partial t}\right) = r_{i}^{dV_{X}} \\ \frac{\partial V}{\partial t} = \mathbf{k}^{ia} \left(\frac{\partial C^{V}}{\partial t}\right) = \mathbf{k}^{ia} \left(\frac{\partial C^{V}_{s}}{\partial t} + \frac{\partial C^{V}_{n}}{\partial t}\right), \end{cases}$$

$$\begin{cases} \pi_{\gamma_{k}}^{*}(k(X),T_{l},t) = \pi_{\gamma_{k}}(I_{k},\alpha_{k},\tau_{k},S_{1},\dots,S_{J},t) \cdot \pi_{\gamma_{k}}^{treat}(T_{l}) & (1) \\ r_{i}^{dV_{X}}(X,t) = \frac{dc_{i}^{dV_{X}}(X,S_{1},\dots,S_{J},t)}{dt} \\ \dot{S}_{j}(X,t) = \sum_{k}^{N \in dV_{X}} \chi_{k}^{j}(I_{k},\alpha_{k},\gamma_{k},\tau_{k},t) + \sum_{k}^{N \in dV_{X}} \sigma_{k}^{j}(I_{k},\alpha_{k},\gamma_{k},\tau_{k},t) \\ r_{i}^{dV_{X}}(X,t) = f_{p}^{i,a}(X,t) - f_{d}^{i,a}(X,t) = \frac{dC_{i}^{dV_{X}}(X,t)}{dt} \\ \frac{\partial C_{i}^{dV_{X}}(X,t)}{\partial t} + \nabla \cdot \left(C_{i}^{dV_{X}}(X,t)\frac{\partial u(X,t)}{\partial t}\right) = r_{i}^{dV_{X}} \\ \frac{\partial V}{\partial t} = k^{ia}\left(\frac{\partial C^{V}}{\partial t}\right) = k^{ia}\left(\frac{\partial C_{s}^{V}}{\partial t} + \frac{\partial C_{n}^{V}}{\partial t}\right), \end{cases}$$

• Tumour

• Finite Element Method

• Tissue

• Agent-Based Model

• Cell

• Machine learning

Temporal extent -> duration of chemotherapy

Temporal Grain -> minimum distance to successive imaging controls

- Tumour
 - Finite Element Method

• Tissue

Agent-Based Model

• Cell

• Machine learning

Spatial extent -> size of tumour

Spatial Grain -> limited by image resolution and number of degrees of freedom the FEM can solve

Tumour

• Finite Element Method

• Tissue

• Agent-Based Model

• Cell

• Machine learning

Spatial extent -> conveniently set to grain of tumour model A tumour model with 300000 Finite Elements requires 300000 executions of the ABM • Tumour

• Finite Element Method

• Tissue

Agent-Based Model

• Cell

• Machine learning

• Tumour

• Finite Element Method

Binning Interpolation 1

• Tissue

• Agent-Based Model

• Cell

• Machine learning

Spatial extent -> conveniently set to grain of tumour model A tumour model with 300000 Finite Elements requires 300000 executions of the ABM - available HPC resources include 100 GPUs simultaneously

Spatial and temporal extent of cell model -> conveniently set to grain of tissue model

Tumour

• Finite Element Method

Binning Interpolation

• Tissue

• Agent-Based Model

Not coupled, run once

Cell

• Machine learning

Scale separation applied to solid tumour growth

Considerations

- The aim of this study was to find the scale separation of a new multiscale tumour growth model that minimises the modelling complexity, while respecting the experimental resolution and computational constraints that limit the scale ranges.
- Reduction of hundreds of thousands of FE to a hundred ABM is a major simplification.
- Every paper that describes a multiscale model should provide justification for its scale separation based on the resolution of the experimental methods available to inform the model and the computational power available for its solution.

Barbara de Melo Quintela

Thanks!

Department of Computer Science, Federal University of Juiz de Fora, Juiz de Fora, Brazil. barbara@ice.ufjf.br

Silvia Hervas-Raluy, Jose Manuel Garcia-Aznar

Multiscale in Mechanical and Biological Engineering (M2BE), Mechanical Engineering Dept, University of Zaragoza, Zaragoza, Spain.

Kenneth Y Wertheim, Dawn Walker

Department of Computer Science and Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK.

Marco Viceconti

Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna and Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

Medical imaging Artificial intelligence Childhood cancer researc