

Towards a Virtual Immune System: Multi-Scale Modeling of CD4+ T Lymphocytes

Presenting author: Kenneth Y. Wertheim, PhD

Authors: Kenneth Wertheim, Bhanwar Lal Puniya, Alyssa La Fleur, Ab Rauf Shah, Matteo Barberis, and Tomas Helikar

National Institutes of Health

Travel fellowship funding generously provided by SysMod COSI.

The Immune System

- Defends the body against disease-causing invaders.
- Whole-body system: many tissues and organs.
- Immunodeficiency such as AIDS caused by HIV.
- Autoimmunity such as celiac disease.
- Spans many scales of biological organization.

Source: The Open University, SXR376 Preparatory Reading, fig. 1.2, page 7. http://moodle.digital-campus.org/mod/page/view.php?id=18790.

Network of Molecules and Cells

- Mathematically and computationally capture the information flow in the network.
- Cell population: different cell types, phenotypes, and metabolic rates.
- Extracellular: concentration dynamics of cytokines and antibodies.
- Intracellular: signaling, gene regulation, and metabolism.
- Our focus: systems-level dynamics between these scales.
- Example: CD4+ T lymphocytes.

Source: https://clinicalgate.com/introduction-to-the-immune-system-2/#ch372efig2.

CD4+ T Lymphocytes

Source: Zhu, J. and Paul, W. E. (2008). CD4 T cells: fates, functions, and faults. *Blood*, 112(5), 1557-1569. https://doi.org/10.1182/blood-2008-05-078154.

- Central to the adaptive immune system: antigen-specific, slow-forming, and long-term.
- They secrete cytokines to unleash other immune cell types, *e.g.*, CD8+ T lymphocytes, macrophages, *etc*.
- Different phenotypes, different purposes.

CD4+ T Lymphocytes

Source: Hale, J. S., *et al.* (2013). Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. *Immunity*, 38(4), 805-817.

https://www.sciencedirect.com/science/article/pii/S1074761313001428?via%3Dihub.

- Naive cells activate in response to an infection.
- Effector cells divide rapidly and produce cytokines.
- Memory cells are the effector cells that outlive the infection.
- Memory cells respond to subsequent infections faster and more strongly than naive cells.

Model Architecture: Extracellular

- Extracellular: 11 cytokines (IL2, IL4, IL6, IL12, IL17, IL18, IL21, IL23, IL27, IFNg, and TGFb).
- Three spatially lumped concentrations.
- Functions of time only.
- Three continuous stirred-tank reactors.
- Two downstream units in parallel.
- With a recycle stream.

Source: Fogler, H. S. (2010). *Essentials of chemical reaction engineering solution manual*. Pearson Education. https://www.chegg.com/homework-help/asked-explore-example-problemschapter-learn-effects-varyin-chapter-5-problem-2qp-solution-9786612872860-exc.

Model Architecture: Cell Population

- Cell population: CD4+ T lymphocytes (naive, Th0, Th1, Th2, Th17, Treg, and memory).
- Move between the compartments; different migration patterns in health and during infections.
- Sense and produce cytokines.
- Agent-based model.
- The invading antigen and the other immune cells are abstracted into a user-defined input signal.

Model Architecture: Information Flow

Production due to infections and the explicitly modeled immune cells.

$$\frac{dC}{dt} = P - k_{deg}C + N_{in}P_{in} + N_{ex}P_{ex} + Convection$$

Natural production and degradation.

Movement between the three compartments.

- For each cytokine, there are three such equations.
- Coupled through the convection terms.
- Linear reaction terms. Dynamics of species A do not affect species B.

- Agent-based model is parametrized by the concentrations and user-defined input.
- One logical model and five metabolic models in each agent.
- Agent-based model parametrizes the ordinary differential equations.

Model source: Puniya, B. L., *et al.* (2018). A mechanistic computational model reveals that plasticity of CD4+ T cell differentiation is a function of cytokine composition and dosage. *Frontiers in Physiology*, 9, 462.

Cell Collective: Helikar, T., *et al.* (2012). The cell collective: toward an open and collaborative approach to systems biology. *BMC systems biology*, 6(1), 96.

- Logical model.
- Each node is a Boolean variable (0 or 1).
- Yellow nodes: inputs, stochastically on or off.
- Grey nodes: outputs, determined by the states of all nodes.
- Markov chain.
- Activity level of an output node: fraction of iterations where it is on.
- 73 nodes (15 input nodes) and 156 edges.

- Three types of inputs
- User-defined input, roughly corresponding to the
- Cytokine concentrations.

Input

Agent attributes *e.g.* division count and

- Which cytokines can the agent produce?
- Become agent attributes used to parametrize the ordinary differential equations.

 $\frac{dC}{dt} = P - k_{deg}C + N_{in}P_{in} + N_{ex}P_{ex} + Convection$

6

Metabolic models

(single cell)

Input

Metabolism

Source: Simeonidis, E. and Price, N. D. (2015). Genome-scale modeling for metabolic engineering. *Journal of industrial microbiology & biotechnology*, 42(3), 327-338. https://link.springer.com/article/10.1007/s10295-014-1576-3.

Five metabolic models, one for each phenotype. Around 3000 metabolites and 4000 metabolic fluxes *per* model (Lal Puniya *et al.*, in preparation).

- Flux balance analysis.
- Step 1: genome-scale metabolic networks.
- Step 2: mass balance of each metabolite.
- Step 3: steady-state assumption.
- Step 4: objective function (production rate of biomass or DNA).
- Step 5: constraints on the metabolic fluxes (logical model outputs).
- Step 6: linear programming.
- Step 7: optimized biomass and DNA production rates become agent attributes.

Cell Cycle and Division

Cell: cell growth. Model: biomass production. Cell: DNA replication. Model: DNA production. Cell: chromosome segregation. Model: agent replication.

Validation

- Population dynamics in response to influenza.
- Cell differentiation in response to different cytokines.

- Naive CD4+ T cells were labeled with a dye (CFSE) and transferred to mice.
- Mice were inoculated with Influenza A virus (A/PR/8/34).
- At different time points, their lungs, bronchial alveolar lavages, spleens, draining lymph nodes, and non-draining lymph nodes were sampled.
- Viral titer (viral plaque assay) and CD4+ T cell count (flow cytometry).

• 4 days post-infection.

(a) Experiment: expansion in the draining lymph nodes (16-fold).

(a) Simulation: expansion in the draining lymph node (nine-fold).

(b) Experiment: no effector cells in the lungs (time delay between the draining lymph node and lung dynamics).

(b) Simulation: lung dynamics are far below the peak (time delay).

- Quantitative differences: non-physical model input.
- Parametric fine-tuning.

- 6 days post-infection.
- Experiment: the response peaked in all sampled tissues.
- Simulation: validated.

- 8 days post-infection.
- Experiment: between day 6 and day 8, the populations were declining.
- Simulation: declining dynamics validated.

Source: Eizenberg-Magar, I., *et al.* (2017). Diverse continuum of CD4+ T-cell states is determined by hierarchical additive integration of cytokine signals. *Proceedings of the National Academy of Sciences*, 201615590.

- Naive CD4+ T cells from mouse spleens.
- Cultured with TCR, CD3, and CD28 signals.
- Supplemented with cytokines: 64 combinations of IL2, IL4, IL6, IL12, IFNg, and TGFb.
- For example, IL2 is either present at 5 ng/mL or absent.
- Expression levels of four transcription factors and six cytokines (intracellular staining and flow cytometry).
- Classification into phenotypes.

Cytokine Combination	Phenotype
IL12	Th1
IL2 and IL4	Th2
TGFb and IL6	Th17
TGFb and IL2	Treg

- Same input from the influenza experiment.
- No cytokine production due to the input.
- Reproduced four experimental cytokine combinations in the three compartments.

Phenotypic distribution of CD4+ T lymphocytes at the peak of an immune response

 Phenotypic distribution in the effector cell population at the peak of the immune response in the presence of IL12.

Cytokine Combination	Phenotype
IL12	Th1
IL2 and IL4	Th2
TGFb and IL6	Th17
TGFb and IL2	Treg

Phenotypic distribution of CD4+ T lymphocytes at the peak of an immune response

- Model is differentially sensitive to different cytokines.
- Top: experimental dosage of TGFb and IL2; Treg response is weaker than the Th1 counterpart.
- Bottom: 10 times the experimental dosage.
- Higher cytokine concentrations, stronger response.

Cytokine Combination	Phenotype
IL12	Th1
IL2 and IL4	Th2
TGFb and IL6	Th17
TGFb and IL2	Treg

Further Validation Studies

- Differentiation into more complex phenotypes.
- Effects of IL2, IL4, and IFNg on metabolism.
- Effects of chronic inflammation.

Conclusions

- Multi-scale model of CD4+ T lymphocytes.
- Four modeling frameworks: ordinary differential equations, agent-based model, logical model, and metabolic models.
- Three numerical methods: finite difference method, Monte Carlo method, and linear programming.
- Proof of concept.

Future Work

- Model other immune cell types and their relevant cytokines and antibodies.
- Direct interactions between the modeled immune cell types.
- Virtual immune system: a multi-scale platform for immunologists.