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The Immune System
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Source: The Open University, SXR376 Preparatory Reading, fig. 1.2, page 7.

http://moodle.digital-campus.org/mod/page/view.php?id=18790.

Defends the body against
disease-causing invaders.

Whole-body system: many
tissues and organs.

Immunodeficiency such as AIDS
caused by HIV.

Autoimmunity such as celiac
disease.

Spans many scales of biological
organization.



Network of Molecules and Cells
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Mathematically and computationally
capture the information flow in the
network.

Cell population: different cell types,
phenotypes, and metabolic rates.

Extracellular: concentration dynamics
of cytokines and antibodies.

Intracellular: signaling, gene
regulation, and metabolism.

Our focus: systems-level dynamics
between these scales.

Example: CD4+ T lymphocytes.



CD4+ T Lymphocytes
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Source: Zhu, J. and Paul, W. E. (2008). CD4 T cells: fates, functions, and faults.

Blood, 112(5), 1557-1569. https://doi.org/10.1182/blood-2008-05-078154.

Central to the adaptive
Immune system: antigen-
specific, slow-forming, and
long-term.

They secrete cytokines to
unleash other immune cell
types, e.g., CD8+ T
lymphocytes, macrophages,
etc.

Different phenotypes,
different purposes.



CD4+ T Lymphocytes
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follicular helper-and T helper 1-cell lineages are generated after acute viral infection.
Immunity, 38(4), 805-817.
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Naive cells activate in
response to an infection.

Effector cells divide rapidly
and produce cytokines.

Memory cells are the effector
cells that outlive the infection.

Memory cells respond to
subsequent infections faster
and more strongly than naive
cells.



Model Architecture: Extracellular
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Extracellular: 11 cytokines (IL2,
IL4, IL6, IL12, IL17, IL18, IL21,
IL23, IL27, IFNg, and TGFb).

Three spatially lumped
concentrations.

Functions of time only.

Three continuous stirred-tank
reactors.

Two downstream units in parallel.
With a recycle stream.

Source: Fogler, H. S. (2010). Essentials of chemical reaction engineering solution manual.
Pearson Education. https://www.chegg.com/homework-help/asked-explore-example-problems-

chapter-learn-effects-varyin-chapter-5-problem-2qp-solution-9786612872860-exc.



Model Architecture: Cell Population
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Cell population: CD4+ T
lymphocytes (naive, ThO, Thl,
Th2, Thl7, Treg, and memory).

Move between the compartments;
different migration patterns in
health and during infections.

Sense and produce cytokines.
Agent-based model.

The invading antigen and the
other immune cells are abstracted
Into a user-defined input signal.



Model Architecture: Information Flow

Production due to infections
and the explicitly modeled
immune cells.

dC _ p _
= P kdEgC +N. P, +Nex I;x+ Convection
Natural production Movement between the
and degradation_ three compartments.
* For each cytokine, there are three such .
equations.

e Coupled through the convection terms.

« Linear reaction terms. Dynamics of species
A do not affect species B.

equations (compartments)

e L=

Agent-based model
(cell population)

// \\

Logical model
(single cell)

Ordinary differential ‘

Metabolic models
(single cell)

Agent-based model is parametrized by
the concentrations and user-defined
input.

One logical model and five metabolic
models in each agent.

Agent-based model parametrizes the
ordinary differential equations.



Signaling and Gene Regulation

'mTORCT _t ‘ AMP Ribosome Resist
ILd e |L1& k12 'Tf:;'f. coza W27 IFMg_e BIL2 L33 5 b
RIZK
[ ] IL18R ®
.: . AME ® ® IFNJR '. .
N IL12R ® mIORC2 IL29R LB
‘. Akt
aGlycolysis” @ . . X I L ] TGFBR
ik L IR AR ] . . NEKT
.. mMTORCE JHL” ‘ ) IL7R .
Gtucose_uptake Y Fasl fFash iR
" Bl
aatranspart . ) . =
9 SREHEFZ RS
® Uik12 y f . :

i ERR3 3 STAT1 1.0 P73
Mito_o¥ . U%ps .. i HTATS ®
Lipid_gFFlux - NFKB SOET 9

¢ o
Glutaminolysis ETATS
STATE =
@ P'S o
.led v ' STATS
" o RORQE Eoupd .'
GATAS i ]
9
Mg K4 L2 IL17 IL& IL2Y
. . ® © »

Model source: Puniya, B. L., et al. (2018). A mechanistic computational model reveals that
plasticity of CD4+ T cell differentiation is a function of cytokine composition and dosage.
Frontiers in Physiology, 9, 462.

Cell Collective: Helikar, T., et al. (2012). The cell collective: toward an open and
collaborative approach to systems biology. BMC systems biology, 6(1), 96.
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Logical model.

Each node is a Boolean
variable (0 or 1).

Yellow nodes: inputs,
stochastically on or off.

Grey nodes: outputs,
determined by the states of
all nodes.

Markov chain.

Activity level of an output
node: fraction of iterations
where it is on.

73 nodes (15 input nodes)
and 156 edges.



Signaling and Gene Regulation

Three types of inputs

User-defined input, roughly
corresponding to the
antigen load.

Cytokine concentrations.

Agent attributes e.g.
division count and
AMP/ATP ratio.

Ordinary differential
equations (compartments)
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Signaling and Gene Regulation

« Four transcription factors.
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Signaling and Gene Regulation

Resist
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Signaling and Gene Regulation

« Which cytokines can the
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Signaling and Gene Regulation
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 Metabolic events such as
glucose uptake.

« Eacheventis a group of
many metabolic reaction

_ fluxes.
®
» Become agent attributes used
® to parametrize metabolic
® models.
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Metabolism

a
based on stoichiometry and
steady-slate assumplion
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Source: Simeonidis, E. and Price, N. D. (2015). Genome-scale modeling for metabolic
engineering. Journal of industrial microbiology & biotechnology, 42(3), 327-338.
https://link.springer.com/article/10.1007/s10295-014-1576-3.

Five metabolic models, one for each phenotype.

Flux balance analysis.

Step 1. genome-scale
metabolic networks.

Step 2: mass balance of each
metabolite.

Step 3: steady-state
assumption.

Step 4: objective function
(production rate of biomass or
DNA).

Step 5: constraints on the
metabolic fluxes (logical model
outputs).

Step 6: linear programming.

Step 7: optimized biomass and
DNA production rates become
agent attributes.

Around 3000 metabolites and 4000 metabolic fluxes

per model (Lal Puniya et al., in preparation).



Cell Cycle and Division

Cell: cell growth. Cell: DNA replication. Cell: chromosome segregation.
Model: biomass production.  Model: DNA production. Model: agent replication.
Phase G1 > Phase S »| Phases G2/M
-
Ordinary differential ‘
equations (compartments)

1=

Agent-based model
(cell population)

/7 \N

Logical model Metabolic models
(single cell) (single cell)




Validation

* Population dynamics in response to influenza.

» Cell differentiation in response to different
cytokines.



Validation: Population Dynamics
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influenza: heterogeneity, migration, and function. Journal of Experimental
Medicine, 196(7), 957-968.

Naive CD4+ T cells were labeled
with a dye (CFSE) and
transferred to mice.

Mice were inoculated with
Influenza A virus (A/PR/8/34).

At different time points, their
lungs, bronchial alveolar lavages,
spleens, draining lymph nodes,
and non-draining lymph nodes
were sampled.

Viral titer (viral plague assay) and
CD4+ T cell count (flow
cytometry).



Cell count

12OI;J'l:JFlulatit:rn dynamics of CD4+ T lympohcytes (effectors)

Validation: Population Dynamics
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» 4 days post-infection.

(a) Experiment: expansion in the
draining lymph nodes (16-fold).

(a) Simulation: expansion in the draining
lymph node (nine-fold).

(b) Experiment: no effector cells in the
lungs (time delay between the draining
lymph node and lung dynamics).

(b) Simulation: lung dynamics are far
below the peak (time delay).

Quantitative differences: non-physical
model input.

« Parametric fine-tuning.

Source: Roman, E., et al. (2002). CD4 effector T cell subsets in the response to influenza:
heterogeneity, migration, and function. Journal of Experimental Medicine, 196(7), 957-968.
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Validation: Population Dynamics

| * 6 days post-infection.
* Experiment: the
response peaked in all
sampled tissues.
» Simulation: validated.
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. . Source: Roman, E., et al. (2002). CD4 effector T cell subsets in the response to influenza:
Days after influenza infection heterogeneity, migration, and function. Journal of Experimental Medicine, 196(7), 957-968.
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Validation: Population Dynamics
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Validation: Cell Differentiation
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Source: Eizenberg-Magar, 1., et al. (2017). Diverse continuum of CD4+ T-cell
states is determined by hierarchical additive integration of cytokine signals.
Proceedings of the National Academy of Sciences, 201615590.

 Naive CD4+ T cells from mouse
spleens.

e Cultured with TCR, CD3, and CD28
signals.

o Supplemented with cytokines: 64
combinations of IL2, IL4, IL6, IL12,
IFNg, and TGFhb.

* For example, IL2 Is either present at
5 ng/mL or absent.

» Expression levels of four transcription
factors and six cytokines (intracellular
staining and flow cytometry).

 Classification into phenotypes.



Validation: Cell Differentiation

e Same Iinput from the
Influenza experiment.

Cytokine Combination Phenotype e NO CytOkine production

IL12 Thi due to the input.
IL2 and I1L4 Th2
TGFb and IL6 Thi7 * Reproduced four
TGFb and IL2 Treg

experimental cytokine
combinations in the
three compartments.



Validation: Cell Differentiation

Phenotypic distribution of CD4+ T lymphocytes at the peak of an immune response

T * Phenotypic distribution
In the effector cell
population at the peak
of the Immune
response in the
presence of IL12.

Cytokine Combination Phenotype

IL12 Thl
IL2 and IL4 Th2
TGFb and IL6 Thl7

TGFb and IL2 Treg



Validation: Cell Differentiation

Phenotypic distribution of CD4+ T lymphocytes at the peak of an immune response
Treg

 Model is differentially sensitive to
different cytokines.

» Top: experimental dosage of TGFb
and IL2; Treg response is weaker
than the Thl counterpart.

« Bottom: 10 times the experimental
dosage.

« Higher cytokine concentrations,
stronger response.

Tho

Phenotypic distribution of CD4+ T lymphocytes at the peak of an immune response

Treg

Cytokine Combination Phenotype

IL12 Thl
IL2 and I1L4 Th2
TGFb and IL6 Th1l7

TGFb and IL2 Treg



Further Validation Studies

 Differentiation into more complex phenotypes.
« Effects of IL2, IL4, and IFNg on metabolism.
» Effects of chronic inflammation.



Conclusions

Multi-scale model of CD4+ T lymphocytes.

Four modeling frameworks: ordinary differential equations, agent-based
model, logical model, and metabolic models.

Three numerical methods: finite difference method, Monte Carlo method,
and linear programming.

Proof of concept.

Future Work

Model other immune cell types and their relevant cytokines and
antibodies.

Direct interactions between the modeled immune cell types.
Virtual immune system: a multi-scale platform for immunologists.

For more information: kwertheim2@unl.edu (Dr Kenneth Y. Wertheim),
thelikarZ@unl.edu (Dr Tomas Helikar), http://helikarlab.org/ (lab website).
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