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therapy." Annual review of medicine 66 (2015): 49.

1. Adrenal medulla is the 

usual primary site.

2. Most common extracranial 

solid tumour in children.

3. 15 % of cancer-related 

deaths in this population.

Marshall, Glenn M., et al. "The prenatal origins of 

cancer." Nature Reviews Cancer 14.4 (2014): 277-289.

1. Neural crest, transient in the embryo.

2. Differentiate into different cell types.

3. Sympathetic nervous system.

4. MYCN amplification and ALK activation turn 

them into neuroblastoma cancer cells.

Sokol, Elizabeth, and Ami V. Desai. "The evolution of risk 

classification for neuroblastoma." Children 6.2 (2019): 27.

1. Low risk, spontaneous regression.

2. High risk, 50 % relapse.

3. MYCN amplification is a bad sign.



Neuroblastoma

Decision support system for the clinical 

management of malignant solid tumours.

Smith, Valeria, and Jennifer Foster. "High-risk 

neuroblastoma treatment review." Children 5.9 (2018): 114.

Current standard: 

multi-modal therapy.
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Primage

Martí-Bonmatí, Luis, et al. "PRIMAGE project: predictive in silico multiscale analytics 

to support childhood cancer personalised evaluation empowered by imaging 

biomarkers." European radiology experimental 4.1 (2020): 1-11.

Decision support system for the clinical management 

of malignant solid tumours.

1. Image acquisition, processing, and segmentation.

2. Integrate radiomic features with other biomarkers, 

such as mutations and histology.

3. Multiscale models: organ/tumour, tissue, and 

intracellular.

4. Machine learning techniques extract insights from 

simulation results.



Primage

Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next generation." cell 144.5 (2011): 646-674.



Primage

de Melo Quintela, B., Hervás-Raluy, S., Garcia-Aznar, J.M., Walker, 

D., Wertheim, K.Y., and Viceconti, M., 2021. A Theoretical Analysis 

of the Scale Separation in a Model to Predict Solid Tumour Growth. 

Journal of Theoretical Biology. Manuscript under review and 

available upon request.

Cannot describe biological phenomena spanning 

nine orders of magnitude in a single-scale model.

1. Experimental resolutions.

2. Model complexity.

3. Computational costs.
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Model structure

Continuous automaton to 

voxelate the microenvironment.

1. Spatial distributions of cells 

and extracellular matrix.

2. Concentration dynamics of 

drugs and nutrients (uniform).

Discrete agents.

1. Neuroblastoma and Schwann cells.

2. Cell cycling and death.

Agent attributes.

1. Mutations.

2. DNA status.

3. Gene expression levels.

Centre-based mechanical model.

1. Resolve agent-agent overlap 

and contact inhibition.

2. Linear force law.

3. Equation of motion.



Model structure

Stochastic simulation algorithm

1. Each agent senses the microenvironment and its neighbouring agents, modifies 

its behaviour, and updates its attributes.

2. Resolve agent-agent overlap using the mechanical model.

3. Modify the microenvironment by considering the agents collectively.

4. Back to step 1.

A series of Bernoulli trials. For example, is 

the MAPK/RAS pathway active?
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Model calibration
Growth kinetics in vitro.

Tumilowicz, Joseph J., et al. "Definition of a continuous 

human cell line derived from neuroblastoma." Cancer 

research 30.8 (1970): 2110-2118.

Extent of necrosis during hypoxia in vitro.

Warren, Daniel R., and Mike Partridge. "The role of necrosis, acute hypoxia 

and chronic hypoxia in 18F-FMISO PET image contrast: a computational 

modelling study." Physics in Medicine & Biology 61.24 (2016): 8596.

Ambros, Ingeborg M., et al. "Neuroblastoma cells provoke 

Schwann cell proliferation in vitro." Medical and Pediatric

Oncology: The Official Journal of SIOP—International 

Society of Pediatric Oncology (Societé Internationale 

d'Oncologie Pédiatrique) 36.1 (2001): 163-168.

Interactions between neuroblastoma 

and Schwann cells in vitro.

Clinical outcomes associated 

with different mutations.

Ackermann, Sandra, et al. "A mechanistic 

classification of clinical phenotypes in neuroblastoma." 

Science 362.6419 (2018): 1165-1170.



Model calibration

Latin hypercube sampling.

1. 3000 combinations of 20 fitting 

parameters.

2. Minimised differences between 

simulation results and in vitro data.

3. Refined calibrated parameters for 

in vivo use.

Growth kinetics in vitro.

Tumilowicz, Joseph J., et al. "Definition of a continuous 

human cell line derived from neuroblastoma." Cancer 

research 30.8 (1970): 2110-2118.

Extent of necrosis during hypoxia in vitro.

Warren, Daniel R., and Mike Partridge. "The role of necrosis, acute hypoxia 

and chronic hypoxia in 18F-FMISO PET image contrast: a computational 

modelling study." Physics in Medicine & Biology 61.24 (2016): 8596.

Ambros, Ingeborg M., et al. "Neuroblastoma cells provoke 

Schwann cell proliferation in vitro." Medical and Pediatric

Oncology: The Official Journal of SIOP—International 

Society of Pediatric Oncology (Societé Internationale 

d'Oncologie Pédiatrique) 36.1 (2001): 163-168.

Interactions between neuroblastoma 

and Schwann cells in vitro.

Clinical outcomes associated 

with different mutations.

Ackermann, Sandra, et al. "A mechanistic 

classification of clinical phenotypes in neuroblastoma." 

Science 362.6419 (2018): 1165-1170.
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Model calibration

Costly simulations.

1. Millions of agents.

2. Four months in a patient’s life.

3. Stochastic simulations.

Simulations on GPUs.

1. FLAMEGPU and FLAMEGPU2 were 

used to generate optimised CUDA code.

2. 3000 time steps took up to 10 minutes.

3. Calibration took 40 days in total. Hardware: 2 TITAN V 

GPUs, 1 TITAN XP GPU, 

and 1 TITAN RTX GPU.
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Macroscopic features.

1. Oxygen level.

2. Abundance of Schwann cells.

Clonal composition.

1. Four clones.

2. Each clone has six subclones.

Clones: MYCN amplification, TERT 

rearrangement, ATRX inactivation, and wild type.

Subclones: combinations of p53 inactivation 

and ALK activation.

Ackermann, Sandra, et al. "A mechanistic classification of clinical phenotypes in neuroblastoma." 

Science 362.6419 (2018): 1165-1170.

Created 1200 virtual tumours with arbitrary 

clonal compositions and macroscopic features.

Clonal competition



Clonal competition

All 1200 tumours (control).

Input space.

1. Macroscopic features (left).

2. Initial clone sizes (right).
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45 regressed cases.

Input space.

1. Hypoxia (left).

2. Uniform initial clone sizes (right).



Clonal competition

1155 progressing cases.

Input space.

1. Abundant oxygen (left).

2. Uniform initial clone sizes (right).
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MYCN-amplified clone died!

MA versus WT: p-value < 0.1 %.

1. Student's t-test.

2. Permutation test.

The other three expanded similarly.

ANOVA: p-value > 25 %.

1. F-test.

2. Permutation test.

1155 progressing cases.

Output space: final clone sizes.
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MYCN-amplified clone died!

MA versus WT: p-value < 0.1 %.

1. Student's t-test.

2. Permutation test.

The other three expanded similarly.

ANOVA: p-value > 25 %.

1. F-test.

2. Permutation test.

The nine growing subclones all 

had their p53 intact!1155 progressing cases.

Output space: final clone sizes.
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p53 and p73

Huang, Miller, and William A. Weiss. "Neuroblastoma and MYCN." 

Cold Spring Harbor perspectives in medicine 3.10 (2013): a014415.

p53 can trigger contradictory cellular functions.

1. Cell cycle arrest.

2. DNA repair.

3. Apoptosis.

p53 has a context-dependent and non-linear 

relationship with the disease outcome.

Context: mechanisms described in the model and the 

parameters quantifying them.

MYCN amplification is associated with p53 

inactivation. This property is in the model.

Gamble, Laura D., et al. "MYCN sensitizes neuroblastoma to the MDM2-p53 

antagonists Nutlin-3 and MI-63." Oncogene 31.6 (2012): 752-763.
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Tested the MYCN-amplified clone’s sensitivity 

to the five most important genes.

1000 combinations of gene expression levels.

283 cases where the MYCN-amplified clone 

expanded drastically.
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One was set to be higher.



p53 and p73

Tested the MYCN-amplified clone’s sensitivity 

to the five most important genes.

1000 combinations of gene expression levels.

283 cases where the MYCN-amplified clone 

expanded drastically.

p73 can compensate for the loss of p53.

In this context, p53 and p73 promote cell 

survival more than apoptosis.
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Targeted therapies

305 most and 297 least effective drug 

combinations.

Principal component analysis to identify a 

latent feature in the 20-dimensional input 

space.

Inhibiting CHK1, p53, and p73 is a winning 

(shrinking) combination.

Note that CHK1 activates p73 in this model.



Targeted therapies

The two predicted clusters separate the effective 

and ineffective drug combinations perfectly.

Silhouette Coefficient > 0.82.

Data projected onto and clustered along the 

first principal component (PC1).

Plotted along the first two principal 

components: PC1 and PC2.

Effective drug 

combinations.

Ineffective drug 

combinations.
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Surrogate modelling

It took around 10 days to evaluate 5000 drug 

combinations on the most advanced GPUs.

A model of the multicellular model using supervised 

machine learning methods.
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Surrogate modelling

One drug combination comprises the 

inhibitory effects on 20 gene products.

20 inputs or features.

Multilayer perceptron.

Multiple linear regression.

Final living neuroblastoma cell count.

One output only.

Coefficient of determination > 0.91.
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Current standard: 

multi-modal therapy.

COJEC protocol:

C: cisplatin.

O: vincristine.

J: carboplatin.

E: etoposide.

C: cyclophosphamide.

Eight two-week cycles.

• Alternating combinations.

• Maximum tolerated doses.

One protocol for every patient.



Induction chemotherapy

Smith, Valeria, and Jennifer Foster. "High-risk 

neuroblastoma treatment review." Children 5.9 (2018): 114.

Current standard: 

multi-modal therapy.

COJEC protocol:

C: cisplatin.

O: vincristine.

J: carboplatin.

E: etoposide.

C: cyclophosphamide.

Optimise a two-drug protocol with respect to 

the tumour’s initial composition.

• Number of cycles.

• Doses in each cycle.
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Model structure

Two first-order pharmacokinetic equations for 

vincristine and cyclophosphamide.

One ordinary differential equation for each clone.
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Molecular Sciences 21.18 (2020): 6811.

Jemaà, Mohamed, et al. "Gene expression signature of acquired 
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Molecular Sciences 21.18 (2020): 6811.

Zaizen, Y., A. Nakagawara, and K. Ikeda. "Patterns of destruction 

of mouse neuroblastoma cells by extracellular hydrogen peroxide 

formed by 6-hydroxydopamine and ascorbate." Journal of cancer 

research and clinical oncology 111 (1986): 93-97.

Yogev, Orli, et al. "In Vivo Modeling of Chemoresistant

Neuroblastoma Provides New Insights into Chemorefractory

Disease and MetastasisModeling Chemoresistance and Metastasis 

in Neuroblastoma." Cancer research 79.20 (2019): 5382-5393.
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Disease and MetastasisModeling Chemoresistance and Metastasis 

in Neuroblastoma." Cancer research 79.20 (2019): 5382-5393.
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in Neuroblastoma." Cancer research 79.20 (2019): 5382-5393.

Levenberg-Marquardt algorithm.

It involves gradient descent.
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Smith, Valeria, and Jennifer Foster. "High-risk 
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COJEC protocol:

C: cisplatin.

O: vincristine.

J: carboplatin.

E: etoposide.

C: cyclophosphamide.

Optimise a two-drug protocol with respect to 

the tumour’s initial composition.

• Number of cycles.

• Doses in each cycle.



Optimisation

Smith, Valeria, and Jennifer Foster. "High-risk 

neuroblastoma treatment review." Children 5.9 (2018): 114.

Current standard: 

multi-modal therapy.

COJEC protocol:

C: cisplatin.

O: vincristine.

J: carboplatin.

E: etoposide.

C: cyclophosphamide.

Optimise a two-drug protocol with respect to 

the tumour’s initial composition.

• Number of cycles.

• Doses in each cycle.

Up to 12 cycles, two drugs.

Chemotherapy schedule = 24 doses.
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36 initial clonal compositions.

Different distributions of neuroblastoma cells 

between the nine clones in the model.



Optimisation

36 initial clonal compositions.

Different distributions of neuroblastoma cells 

between the nine clones in the model. Haldurai, Lingaraj, T. Madhubala, and R. Rajalakshmi. 

"A study on genetic algorithm and its applications." Int. J. 

Comput. Sci. Eng 4.10 (2016): 139-143.

A genetic algorithm 

mimics the process 

of natural selection.
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Optimisation

36 initial clonal compositions.

Different distributions of neuroblastoma cells 

between the nine clones in the model. Haldurai, Lingaraj, T. Madhubala, and R. Rajalakshmi. 

"A study on genetic algorithm and its applications." Int. J. 

Comput. Sci. Eng 4.10 (2016): 139-143.

One schedule, 24 doses.

One chromosome, 24 genes.

100 random 

chromosomes.

Ability to shrink 

the tumour.

Refinement by 

gradient descent.
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Optimisation
Heat maps are 

effective tools for 

visualisation.
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• Turn some clones against the others.



Optimisation Evolutionary principles.

• Turn some clones against the others.

• Apply drug A only to make the tumour 

susceptible to drug B before applying 

drug B.



Conclusions

1. Different problems require different modelling frameworks.

2. Gradient descent can calibrate mechanistic models too.

3. Violin plots and heat maps are powerful visualisation tools.

4. Unsupervised learning can extract insights from large-scale simulation results.

5. Supervised learning can predict the outcome of an expensive simulation.

6. Combination therapy and evolutionary principles can potentially improve multi-
modal therapy for high-risk neuroblastoma.
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