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Objectives

1. PRIMAGE project.
2. Scale separation strategy in the project.

3. The first multi-cellular model of neuroblastoma.

4. Model calibration using GPUs.
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Explainer

https://vimeo.com/613708072/c59¢67572c or https://kywertheim.com/research/PrimageVideo.mp4



https://vimeo.com/613708072/c59c67572c
https://kywertheim.com/research/PrimageVideo.mp4
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Marti-Bonmati, Luis, et al. "PRIMAGE project: predictive in silico multiscale analytics to
support childhood cancer personalised evaluation empowered by imaging biomarkers."
European radiology experimental 4.1 (2020): 1-11.

Decision support system for the clinical management of
malignant solid tumours.

1. Image acquisition, processing, and segmentation.

2. Integrate radiomic features with other biomarkers, such
as mutations and histology.

3. Multiscale models: organ/tumour, tissue, and
intracellular.

4. Machine learning techniques extract insights from
simulation results.
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Neuroblastoma

Louis, Chrystal U., and Jason M. Shohet. "Neuroblastoma: molecular
pathogenesis and therapy." Annual review of medicine 66 (2015): 49-63.

Paediatric cancer:

e Most common extra-cranial
solid tumour in children.

15 % of cancer-related
deaths in children.

e Adrenal medulla is usually
the primary site.
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Marshall, Glenn M., et al. "The prenatal origins of cancer." Nature Reviews

Cancer 14.4 (2014): 277-289.

pathogenesis and therapy." Annual review of medicine 66 (2015): 49-63.

Paediatric cancer:

Neural crest:

* Most common extra-cranial * Transient structure during
solid tumour in children. embryonic development.

* 15 % of cancer-related * Migrate and differentiate into
deaths in children. different cell types.

* Adrenal medulla is usually « Sympathetic nervous system.

the primary site.



Neuroblastoma
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Louis, Chrystal U., and Jason M. Shohet. "Neuroblastoma: molecular
pathogenesis and therapy." Annual review of medicine 66 (2015): 49-63.

Marshall, Glenn M., et al. "The prenatal origins of cancer." Nature Reviews
Cancer 14.4 (2014): 277-289.

Sokol, Elizabeth, and Ami V. Desai. "The Evolution of Risk Classification for Neuroblastoma." Children 6.2 (2019): 27.

Paediatric cancer: Neural crest:
* Most common extra-cranial .

Heterogeneity:
Transient structure during * Spontaneous regression.

solid tumour in children.
15 % of cancer-related
deaths in children.
e Adrenal medulla is usually
the primary site.

embryonic development. .

Migrate and differentiate into
different cell types.
Sympathetic nervous system.

Drug resistance and metastasis even after
multi-modal treatment.

*  MYCN amplification.

* <50 % survival rate in high-risk cases.



Cancer hallmarks

Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next generation." cell 144.5 (2011): 646-674.



Multiscale problem
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de Melo Quintela, B., Hervas-Raluy, S., Garcia-Aznar, J.M., Walker, D., Wertheim, K.Y., and Viceconti,
M., 2021. A Theoretical Analysis of the Scale Separation in a Model to Predict Solid Tumour Growth.
Journal of Theoretical Biology. Manuscript under review and available upon request.

Cannot describe biological phenomena spanning
nine orders of magnitude in a single-scale model.

1. Experimental resolutions.
2. Model complexity.
3. Computational costs.

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA



Multiscale model

Tumour Tissue Cell

Partial differential equations.

Finite element method.

iss  Universidad
1800  Zaragoza

1542

Discrete agents, continuous automaton, and
centre-based mechanical model.

Monte Carlo method.

Statistical and machine learning models.

‘. Chemotargets



Objectives

1. PRIMAGE project.
2. Scale separation strategy in the project.

3. The first multi-cellular model of neuroblastoma.

4. Model calibration using GPUs.



Model structure

Part 1: continuous automaton.

e Voxelate the tumour
microenvironment.

e Spatial distributions of cells and
matrix.

e Oxygen, nutrients, and
chemotherapeutic drugs (uniform).

e Inflammation (uniform).



Model structure

Apoptosis

Cell cycling

Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS-based
geo-atom theory and voxel automata to simulate the dispersal of

Part 2, dlSCfEte agentS airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.
® Neuroblasts and Schwann cells.
e 3D von Neumann neighbourhood in the

Part 1: continuous automaton. continuous automaton.
e Voxelate the tumour
microenvironment.
e Spatial distributions of cells and
matrix.

e Oxygen, nutrients, and
chemotherapeutic drugs (uniform).
e Inflammation (uniform).



Model structure

Apoptosis

/ /

Cell cycling

Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS-based
geo-atom theory and voxel automata to simulate the dispersal of
airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.

Part 2: discrete agents.
® Neuroblasts and Schwann cells.
e 3D von Neumann neighbourhood in the

Part 1: continuous automaton. continuous automaton.
e Voxelate the tumour ® Mutations, gene expression levels, and DNA
microenvironment. status (short telomeres, unreplicated, and
e Spatial distributions of cells and generic damage).
matrix. e Cell cycling (proliferation and division).
e Oxygen, nutrients, and e Cell death (apoptosis and necrosis).

chemotherapeutic drugs (uniform).
e Inflammation (uniform).



Model structure

Part 1: continuous automaton.

e Voxelate the tumour
microenvironment.

e Spatial distributions of cells and
matrix.

e Oxygen, nutrients, and
chemotherapeutic drugs (uniform).

e Inflammation (uniform).

Part 2: discrete agents.

Apoptosis

/

Cell cycling
Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS-based
geo-atom theory and voxel automata to simulate the dispersal of
airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.

Neuroblasts and Schwann cells.

3D von Neumann neighbourhood in the
continuous automaton.

Mutations, gene expression levels, and DNA
status (short telomeres, unreplicated, and
generic damage).

Cell cycling (proliferation and division).

Cell death (apoptosis and necrosis).

Pathmanathan, P., et al. "A computational study of discrete
mechanical tissue models." Physical biology 6.3 (2009): 036001.

Part 3: centre-based mechanical model.
e Cell migration resolves cell-cell overlap.

® Boundary conditions and matrix abundance.



Dynamic simulation

Tumour progression is a dynamic process.

To simulate it, split the process into smaller time steps, and use
the model to predict the events occurring in each time step.

1 time step = 1 hour of the patient’s life.
* Evaluate each cell individually.
* Consider mechanical forces within the cell population.

* Consider how the cell population collectively affects the
tumour microenvironment.



Dynamic simulation: single cell

Each cell senses its microenvironment.
e Nutrients, including oxygen.
e Chemotherapeutic drugs.
® Cell countsin 3D von Neumann
neighbourhood.
e Cell density (contact inhibition).



Dynamic simulation: single cell

Each cell senses its microenvironment.

e Nutrients, including oxygen.

e Chemotherapeutic drugs.

® Cell countsin 3D von Neumann
neighbourhood.

e Cell density (contact inhibition).

A

Differentiation
Therapy

Targeted
Therapy

Neuroblastoma Neurons

v

Jin, Zegao, et al. "Development of differentiation modulators and targeted agents for
treating neuroblastoma." European Journal of Medicinal Chemistry (2020): 112818.

The cell modifies its behaviour.
e Differentiation.

\ Cell cycling /
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Dynamic simulation: single cell
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https://biologydictionary.net/cell-cycle/

Each cell senses its microenvironment. The cell modifies its behaviour.
e Nutrients, including oxygen. e Differentiation.
e Chemotherapeutic drugs. e Cycling and division.
® Cell countsin 3D von Neumann
neighbourhood.

e Cell density (contact inhibition).



Dynamic simulation: single cell

Each cell senses its microenvironment.

Nutrients, including oxygen.
Chemotherapeutic drugs.

Cell counts in 3D von Neumann
neighbourhood.

Cell density (contact inhibition).

https://biologydictionary.net/cell-cycle/

The cell modifies its behaviour.

e Differentiation.
e Cycling and division.

Telomere Shortening

Cell <2
e/

I —_— ﬁé)\

Ce R
Chromosome Cell G2

https://sphweb.bumc.bu.edu/otlt/mph-modules/ph/aging/aging3.html

L

“:c
&

Telomeres, end caps that
protect the chromosome

The cell updates its attributes.
® Telomere shortening and repair.



Dynamic simulation: single cell

Each cell senses its microenvironment.

Nutrients, including oxygen.
Chemotherapeutic drugs.

Cell counts in 3D von Neumann
neighbourhood.

Cell density (contact inhibition).

https://biologydictionary.net/cell-cycle/

The cell modifies its behaviour.

e Differentiation.
e Cycling and division.
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The cell updates its attributes.
® Telomere shortening and repair.
e DNA damage and unreplicated
DNA.



Dynamic simulation: single cell

Each cell senses its microenvironment.

Nutrients, including oxygen.
Chemotherapeutic drugs.

Cell counts in 3D von Neumann
neighbourhood.

Cell density (contact inhibition).

*
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healthy cell
necrosis / \ apoptosis
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@
- increase in cell volume - cell shrinkage

- plasma membrane blebbing
- formation of apoptotic bodies

- loss of plasma membrane integrity
- leakage of cellular contents

What is the difference between necrosis and apoptosis?. Ptglab.com.
https://www.ptglab.com/news/blog/what-is-the-difference-between-
necrosis-and-apoptosis/. Published 2021. Accessed February 24, 2021.

The cell modifies its behaviour.
e Differentiation.
e Cycling and division.
® Apoptosis and necrosis.

The cell updates its attributes.
® Telomere shortening and repair.
e DNA damage and unreplicated
DNA.



Dynamic simulation: single cell

Each cell senses its microenvironment.

Nutrients, including oxygen.
Chemotherapeutic drugs.

Cell counts in 3D von Neumann
neighbourhood.

Cell density (contact inhibition).

Maderna, Paola, and Catherine Godson. "Phagocytosis of apoptotic
cells and the resolution of inflammation." Biochimica et Biophysica
Acta (BBA)-Molecular Basis of Disease 1639.3 (2003): 141-151.

The cell modifies its behaviour.
e Differentiation.
e Cycling and division.
® Apoptosis and necrosis.
® Removal.

The cell updates its attributes.
® Telomere shortening and repair.
e DNA damage and unreplicated
DNA.



Dynamic simulation: cell-cell repulsion

Each cell senses its microenvironment.
e Nutrients, including oxygen.
e Chemotherapeutic drugs.
® Cell countsin 3D von Neumann
neighbourhood.
e Cell density (contact inhibition).



Dynamic simulation: cell-cell repulsion

Each cell senses its microenvironment.

e Nutrients, including oxygen.

e Chemotherapeutic drugs.

® Cell countsin 3D von Neumann
neighbourhood.

e Cell density (contact inhibition).
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Centre-Based mechanical model.
® A cell gets bigger as it progresses
through the cell cycle.
e Cell-Cell overlap.



Dynamic simulation: cell-cell repulsion

Each cell senses its microenvironment.

e Nutrients, including oxygen.

e Chemotherapeutic drugs.

® Cell countsin 3D von Neumann
neighbourhood.

e Cell density (contact inhibition).
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Centre-Based mechanical model.
® A cell gets bigger as it progresses
through the cell cycle.
e Cell-Cell overlap.
® Linear force law.



Dynamic simulation: cell-cell repulsion

Each cell senses its microenvironment.

Nutrients, including oxygen.
Chemotherapeutic drugs.

Cell counts in 3D von Neumann
neighbourhood.

Cell density (contact inhibition).
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Centre-Based mechanical model.

A cell gets bigger as it progresses
through the cell cycle.

Cell-Cell overlap.

Linear force law.

Equation of motion.

dri
F; = Heff o

Uers scales with the abundance of matrix in the voxel.



Dynamic simulation: cell-cell repulsion

Each cell senses its microenvironment.

Nutrients, including oxygen.
Chemotherapeutic drugs.

Cell counts in 3D von Neumann
neighbourhood.

Cell density (contact inhibition).
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Centre-Based mechanical model.

A cell gets bigger as it progresses
through the cell cycle.

Cell-Cell overlap.

Linear force law.

Equation of motion.

dri
F; = Heff o

Uers scales with the abundance of matrix in the voxel.

Iterate these steps
until convergence.




Dynamic simulation: collective phenomena

Each cell senses its microenvironment. The cells modify their microenvironment.
e Nutrients, including oxygen. ® Consume nutrients.
e Chemotherapeutic drugs. e Remodel the vasculature.
® Cell countsin 3D von Neumann ® Produce matrix.
neighbourhood.

e Cell density (contact inhibition).



Procedures in one time step
1. Each cell senses its microenvironment, modifies its
behaviour, and updates its attributes.

2. Resolve cell-cell overlap using the centre-based
mechanical model.

3. The cells collectively modify their microenvironment.



Objectives

1. PRIMAGE project.
2. Scale separation strategy in the project.

3. The first multi-cellular model of neuroblastoma.

4. Model calibration using GPUs.




Lack of relevant data.
e 20 fitting parameters.
® 3000 parametric combinations
generated by Latin hypercube
sampling.



Lack of relevant data.
e 20 fitting parameters.
® 3000 parametric combinations
generated by Latin hypercube
sampling.

Selection process.

Eliminated the 3000 candidates gradually
in a tournament of 6 studies.
Experiments and clinical observations.
The set of parameters that describe the
experiments and observations best.



Lack of relevant data.
e 20 fitting parameters.
® 3000 parametric combinations
generated by Latin hypercube
sampling.

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Selection process.
® 6 studies mimicking experiments and
clinical observations.
® The parameters that describe the
experiments and observations best.




[CANCER RESEARCH 30, 2110-2118, August 1970]

Definition of a Continuous Human Cell Line Derived from
Neuroblastoma!

Joseph J. Tumilowicz, Warren W. Nichols, Jolanta J. Cholon, and Arthur E. Greene

Departments of Cytogenetics [J. J. T., W. W. N J.J. C ], and Cell Biology [A. E. G.] , Institute for Medical Research, Camden, New Jersey 08103
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AGE OF GULTURE (HOURS) Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.
Study 1. Results.
e Cell line derived from neuroblastoma tissue was ® Used each parametric combination to
grown in a growth medium. simulate tumour growth.
® The cell population was tracked over time using e Data fitting: residual sum of squares.
hemocytometer. e Eliminated bottom 2000 combinations.
i

RSS = 3 (us — f(:))?

i=1



Physics in Medicine & Biology

PAPER « OPEN ACCESS

The role of necrosis, acute hypoxia and chronic hypoxia in
18F_FMISO PET image contrast: a computational modelling
study

Daniel R Warren' and Mike Partridge'

Published 23 Movember 2016 « © 2016 Institute of Physics and Engineering in Medicine
Physics in Medicine & Biology, Volume 61, Number 24

Citation Daniel R Warren and Mike Partridge 2016 Phys. Med. Biol. 61 8596

Three-stage Direct
fit 95% CI fit 95% CI
Maximum oxXygen Consumplion rate, gma 17.5 153-25.1 163 15.3-17.9
immHg - 57"
Py, for 50% drop in consumption, Psy,, (mmHg) 27 00-125 1.6 1.2-2.1
Maximum misonidazole binding rate, ko (< 107457 4.3 349 44 2553
Pgq, for 530% drop in binding. Psq s (mmHg) 1.4 0.3-2.6 1.4 1.1-25
Pgq, for 50% necrosis, Ps, (mmHg) 1.2 0.1-49 1.0 04-1.2 Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Study 2. Results.

e Data-driven modelling study. ® Used each parametric combination to
e Oxygen level at which 50 % of cells simulate hypoxia.
will die due to hypoxia. e Death rate: how close to 50 %.
e Combined the results of studies 1 and 2.

® Top 50 combinations remained.
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Medical and Pediatric Oncology 36:163-168 (2001)

Neuroblastoma Cells Provoke Schwann Cell Proliferation In Vitro

Ingeborg M. Ambros, mp,"'* Andishe Attarbaschi, mp," Silvia Rumpler,’
Andrea Luegmayr,' Edvin Turkof, mp,2 Helmut Gadner, mp," and
Peter F. Ambros, PhD!
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Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Results.

Used each parametric combination to
simulate the dynamics between the
neuroblasts and Schwann cells.

Data fitting: 3 residual sums of squares.
Top 10 combinations remained.

Study 3.
® Neuroblasts and Schwann cells were cocultivated. °
® Fractions of proliferating neuroblasts and

Schwann cells were tracked over time.
e Fraction of apoptotic neuroblasts was also °
measured at a point in time. °

1

RSS =) (yi — f(z:))*

i=1



Pediatr Blood Cancer 2009;53:563-569

Clinicopathological Characteristics of Ganglioneuroma and Ganglioneuroblastoma:
A Report From the CCG and COG

Chizuko Okamatsu, mp,'*> Wendy B. London, php, * Arlene Naranjo, rho,® Michael D. Hogarty, mp,?
Julie M. Gastier-Foster, rho,”"® A. Thomas Look, mp,” Michael LaQuaglia, mp,® John M. Maris, mp,”
Susan L. Cohn, mp,? Katherine K. Matthay, mp,'? Robert C. Seeger, mp,"! Tsutomu Saji, mp, >
and Hiroyuki Shimada, mp, rhp"*

TABLE V. Event-Free and Overall Survival for Tumor Category by Clinical Stage

Histological Overall, number Number with 5-year, EFS = SE EFS, P-value S5-year, QS, P-value

category of patients survival data (%) OS + SE (%)
GN-maturing

Stage 1,2, 3 36 34 100 100

Stage 4 0 0 — NA — NA
GNB-intermixed

Stage 1,2, 3 187 179 94.1+4.3 97.04£3.2

Stage 4 2 2 — NA — NA
GNB-nodular FS

Stage 1,2, 3 56 55 92.6+6.3 100

Stage 4 3 3 100 NA 100 NA
GNB-nodular US

Stage 1,2, 3 116 114 80.1+8.0 862470

Stage 4 132 132 16.7£5.8 <0.0001 359470 <0.0001
EFS, event-free survival; OS, overall survival; SE, standard error; NA, not applicable due to noevent; —, No patients at risk at 5 years; GN-maturing,

ganglioneuroma, maturing subtype; GNB-intermixed, ganglioneuroblastoma, intermixed; GNB-nodular FS, ganglioneuroblastoma, nodular—
favorable subset; GNB-nodular US, ganglioneuroblastoma, nodular—unfavorable subset.

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Study 4. Results.
® Clinical observations. ® Used each parametric combination to
e Neuroblastoma, nodular ganglioneuroblastoma, predict the clinical outcomes for different
intermixed ganglioneuroblastoma, maturing histology types.
ganglioneuroma, and mature ganglioneuroma. ® Proportion of malignant outcomes.
e Clinical outcomes: regression, differentiation, and ® Only 4 combinations gave results
malignant (death, progression, and relapse). resembling clinical observations.



A mechanistic classification of
clinical phenotypes in neuroblastoma

Sandra Ackermann'**, Maria Cartolano®>#, Barbara Hero*, Anne Welte"?,
Yvonne Kahlert"”, Andrea Roderwieser"”, Christoph Bartenhagen”, Esther Walter"?,
Judith Gecht*, Laura Kerschke®, Ruth Volland*, Roopika Menon®,
J M. Hi S, Moritz Gartlgruber’, Sabine Hartlieb’, Kai-Oliver Henrich’,
Konstantin Ok ikov®, Janine Altmiiller®, Peter Niirnberg 2%, Steve Lefever'!,
Bram de Wilde", Frederik Sand**, Fakhera Ikram"*'%, Carolina Rosswog">,

ina Fischer"?, Jessica Theissen"*, Falk Hertwig">">'*'% Aatur D. Singhi'®,
Thorsten Simon* , Wenzel Vogel'”*®, Sven Perner'”'®, Barbara Krug'?,
Matthias idt>%, Sven 2122 viktor Achter®®, Ulrich Lang>***,
Christian VokuhI*®, Monika Ortmann°, Reinhard Biittner*®, Angelika Eggert'>"'*'>,
Frank Speleman™, Rodel'l(:kJ o’smuvan” Roman K. Thomas™'*26:28
Frank Berthold* #, Jo V 1*, Al der Schrammt® *, Frank Weslermann
Johannes H. Schulte®*'*%%, Martin Pelfer’ »3%, Matthias Flscher 124
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Stage 4S
No progression

Results.
® Used each parametric combination to

predict the clinical outcomes given different
mutations.

® Proportion of malighant outcomes.

® Only 3 combinations gave results
resembling clinical observations.

Study 5.
® C(linical observations.
e Different combinations of mutations.
e MYCN not amplified.
e Clinical outcomes: regression, differentiation, and

malignant (death, progression, and relapse).



A mechanistic classification of
clinical phenotypes in neuroblastoma
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Study 6.

® C(linical observations.

e Different combinations of mutations.
e MYCN amplified.
°

Clinical outcomes: regression, differentiation, and

malignant (death, progression, and relapse).

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Results.
® Used each parametric combination to
predict the clinical outcomes given different
mutations.
® Proportion of malighant outcomes.
Results not conclusive.
e All studies taken together, candidate 564
was selected.
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Study 6.

Clinical observations.

Different combinations of mutations.

MYCN amplified.

Clinical outcomes: regression, differentiation, and
malignant (death, progression, and relapse).
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Results.

Used each parametric combination to
predict the clinical outcomes given different
mutations.

Proportion of malignant outcomes.

Results not conclusive.

All studies taken together, candidate 564
was selected.
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FLAME GPU

High-Performance computing.

High computational costs.

e Simulations on GPUs enabled

e Millions of cells in > 4 months.

® Stochastic simulations.

to optimised CUDA code.

by FLAMEGPU.
® Mapping of model descriptions
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FLAMEGPU2.
® Modellers can focus on building the model
without worrying about CUDA programming and
GPU optimisation strategies.
e High performance: millions of agents.
e Visualisation in real time.
e C++ and Python APIs for model definition.

Implementation

—e— circles_bruteforce

—% - circles_bruteforce_rtc

= circles_spatial3D
/' -<4- circles_spatial3D_rtc

Applications.
® Neuroblastoma progression.
e Development of in silico trials for tuberculosis

(Strituvad). 13 agent types, around 170
functions, and over 200 parameters.
Understanding boarding and alighting at
platform-train interface under social distancing
guidelines.



FLAME GPU

High computational costs.
e Millions of cells in > 4 months.
® Stochastic simulations.

High-Performance computing.

Simulations on GPUs enabled
by FLAMEGPU.

Mapping of model descriptions
to optimised CUDA code.

Computational time.

2 TITAN V GPUs, 1 TITAN XP GPU,
and 1 TITAN RTX GPU.

3000 time steps took 5 to 10
minutes.

All 6 studies took around 40 days.
Impossible without GPUs.



FLAME GPU

High-Performance computing.

High computational costs.
e Millions of cells in > 4 months.
® Stochastic simulations.

Simulations on GPUs enabled
by FLAMEGPU.

Mapping of model descriptions
to optimised CUDA code.

e
‘-
<

‘.
-

NB CELLS WITHOUT MY(N." :
AMPLIFICATION ’

NB CELLS WITH MYCN
AMPLIFICATION

Bogen, Dominik, et al. "The genetic tumor background is an important
determinant for heterogeneous MYCN-amplified neuroblastoma."
International journal of cancer 139.1 (2016): 153-163.

Next steps.

* Introduce clones of cells with
different mutations and simulate
tumour progression.

 What are the factors that contribute
to regression/differentiation?

* How can we manipulate these factors
to induce regression/differentiation?



Take-Home Message 1.

The PRIMAGE project aims to build a decision support
system for the clinical management of malignant solid
tumours.




Take-Home Message 2.

Cancer hallmarks span 9 orders of magnitude in both space
and time. Due to limits posed by experimental resolutions,
model complexity, and computational costs, it is necessary
to build separate models for the critical scales and
orchestrate information flow between the models.




Take-Home Message 3.

We built the very first multi-cellular model of
neuroblastoma by integrating a continuous automaton,
discrete agents, and a centre-based mechanical model.




Take-Home Message 4.

The multi-cellular model has 20 fitting parameters. We
calibrated them in a Squid Game—style tournament. We
used Latin hypercube sampling to generate 3000
combinations of parameters, aggregated experimental and
clinical data, and used the data to design 6 in silico studies
performed on GPUs to assess the combinations.
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