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Decision support system for the clinical management of 

malignant solid tumours.

1. Image acquisition, processing, and segmentation.

2. Integrate radiomic features with other biomarkers, such 

as mutations and histology.

3. Multiscale models: organ/tumour, tissue, and 

intracellular.

4. Machine learning techniques extract insights from 

simulation results.

Martí-Bonmatí, Luis, et al. "PRIMAGE project: predictive in silico multiscale analytics to 
support childhood cancer personalised evaluation empowered by imaging biomarkers." 
European radiology experimental 4.1 (2020): 1-11.
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Heterogeneity:
• Spontaneous regression.
• Drug resistance and metastasis even after 

multi-modal treatment.
• MYCN amplification.
• < 50 % survival rate in high-risk cases.



Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next generation." cell 144.5 (2011): 646-674.

Cancer hallmarks



de Melo Quintela, B., Hervás-Raluy, S., Garcia-Aznar, J.M., Walker, D., Wertheim, K.Y., and Viceconti, 
M., 2021. A Theoretical Analysis of the Scale Separation in a Model to Predict Solid Tumour Growth. 
Journal of Theoretical Biology. Manuscript under review and available upon request.

Cannot describe biological phenomena spanning 

nine orders of magnitude in a single-scale model.

1. Experimental resolutions.

2. Model complexity.

3. Computational costs.

Multiscale problem



Partial differential equations.

Finite element method.

Tumour Tissue Cell

Discrete agents, continuous automaton, and 

centre-based mechanical model.

Monte Carlo method.

Statistical and machine learning models.

Multiscale model
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continuous automaton.
● Mutations, gene expression levels, and DNA 

status (short telomeres, unreplicated, and 
generic damage).

● Cell cycling (proliferation and division).
● Cell death (apoptosis and necrosis).

Part 3: centre-based mechanical model.
● Cell migration resolves cell-cell overlap.
● Boundary conditions and matrix abundance.

Pathmanathan, P., et al. "A computational study of discrete 
mechanical tissue models." Physical biology 6.3 (2009): 036001.

Jjumba, Anthony, and Suzana Dragicevic. "Integrating GIS‐based 
geo‐atom theory and voxel automata to simulate the dispersal of 
airborne pollutants." Transactions in GIS 19.4 (2015): 582-603.

Model structure



Dynamic simulation

Tumour progression is a dynamic process.

To simulate it, split the process into smaller time steps, and use 
the model to predict the events occurring in each time step.

1 time step = 1 hour of the patient’s life.
• Evaluate each cell individually.
• Consider mechanical forces within the cell population.
• Consider how the cell population collectively affects the 

tumour microenvironment.
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Each cell senses its microenvironment.
● Nutrients, including oxygen.
● Chemotherapeutic drugs.
● Cell counts in 3D von Neumann 

neighbourhood.
● Cell density (contact inhibition).

Dynamic simulation: single cell

The cell modifies its behaviour.
● Differentiation.
● Cycling and division.
● Apoptosis and necrosis.

The cell updates its attributes.
● Telomere shortening and repair.
● DNA damage and unreplicated 

DNA.

What is the difference between necrosis and apoptosis?. Ptglab.com. 
https://www.ptglab.com/news/blog/what-is-the-difference-between-
necrosis-and-apoptosis/. Published 2021. Accessed February 24, 2021.



Each cell senses its microenvironment.
● Nutrients, including oxygen.
● Chemotherapeutic drugs.
● Cell counts in 3D von Neumann 

neighbourhood.
● Cell density (contact inhibition).

Dynamic simulation: single cell

The cell modifies its behaviour.
● Differentiation.
● Cycling and division.
● Apoptosis and necrosis.
● Removal.

The cell updates its attributes.
● Telomere shortening and repair.
● DNA damage and unreplicated 

DNA.

Maderna, Paola, and Catherine Godson. "Phagocytosis of apoptotic 
cells and the resolution of inflammation." Biochimica et Biophysica
Acta (BBA)-Molecular Basis of Disease 1639.3 (2003): 141-151.
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Iterate these steps 
until convergence.



Each cell senses its microenvironment.
● Nutrients, including oxygen.
● Chemotherapeutic drugs.
● Cell counts in 3D von Neumann 

neighbourhood.
● Cell density (contact inhibition).

Dynamic simulation: collective phenomena

The cells modify their microenvironment.
● Consume nutrients.
● Remodel the vasculature.
● Produce matrix.



1. Each cell senses its microenvironment, modifies its 
behaviour, and updates its attributes.

2. Resolve cell-cell overlap using the centre-based 
mechanical model.

3. The cells collectively modify their microenvironment.

Procedures in one time step
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Selection process.
● 6 studies mimicking experiments and 

clinical observations.
● The parameters that describe the 

experiments and observations best.

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Lack of relevant data.
● 20 fitting parameters.
● 3000 parametric combinations 

generated by Latin hypercube 
sampling.



Study 1.
● Cell line derived from neuroblastoma tissue was 

grown in a growth medium.
● The cell population was tracked over time using 

hemocytometer.

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Results.
● Used each parametric combination to 

simulate tumour growth.
● Data fitting: residual sum of squares.
● Eliminated bottom 2000 combinations.



Study 2.
● Data-driven modelling study.
● Oxygen level at which 50 % of cells 

will die due to hypoxia.

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Results.
● Used each parametric combination to 

simulate hypoxia.
● Death rate: how close to 50 %.
● Combined the results of studies 1 and 2.
● Top 50 combinations remained.



Study 3.
● Neuroblasts and Schwann cells were cocultivated.
● Fractions of proliferating neuroblasts and 

Schwann cells were tracked over time.
● Fraction of apoptotic neuroblasts was also 

measured at a point in time.

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Results.
● Used each parametric combination to 

simulate the dynamics between the 
neuroblasts and Schwann cells.

● Data fitting: 3 residual sums of squares.
● Top 10 combinations remained.



Study 4.
● Clinical observations.
● Neuroblastoma, nodular ganglioneuroblastoma, 

intermixed ganglioneuroblastoma, maturing 
ganglioneuroma, and mature ganglioneuroma.

● Clinical outcomes: regression, differentiation, and 
malignant (death, progression, and relapse).

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.

Results.
● Used each parametric combination to 

predict the clinical outcomes for different 
histology types.

● Proportion of malignant outcomes.
● Only 4 combinations gave results 

resembling clinical observations.



Study 5.
● Clinical observations.
● Different combinations of mutations.
● MYCN not amplified.
● Clinical outcomes: regression, differentiation, and 

malignant (death, progression, and relapse).

Squid Game. Created by Hwang Dong-hyuk, Netflix, 2021.
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resembling clinical observations.
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FLAMEGPU2.
● Modellers can focus on building the model 

without worrying about CUDA programming and 
GPU optimisation strategies.

● High performance: millions of agents.
● Visualisation in real time.
● C++ and Python APIs for model definition.

Applications.
● Neuroblastoma progression.
● Development of in silico trials for tuberculosis 

(Strituvad). 13 agent types, around 170 
functions, and over 200 parameters.

● Understanding boarding and alighting at 
platform-train interface under social distancing 
guidelines.
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High-Performance computing.
● Simulations on GPUs enabled 

by FLAMEGPU.
● Mapping of model descriptions 

to optimised CUDA code.

High computational costs.
● Millions of cells in > 4 months.
● Stochastic simulations.

Next steps.
• Introduce clones of cells with 

different mutations and simulate 
tumour progression.

• What are the factors that contribute 
to regression/differentiation?

• How can we manipulate these factors 
to induce regression/differentiation?

Bogen, Dominik, et al. "The genetic tumor background is an important 
determinant for heterogeneous MYCN‐amplified neuroblastoma." 
International journal of cancer 139.1 (2016): 153-163.



Take-Home Message 1.

The PRIMAGE project aims to build a decision support 
system for the clinical management of malignant solid 
tumours. 



Take-Home Message 2.

Cancer hallmarks span 9 orders of magnitude in both space 
and time. Due to limits posed by experimental resolutions, 
model complexity, and computational costs, it is necessary 
to build separate models for the critical scales and 
orchestrate information flow between the models.



Take-Home Message 3.

We built the very first multi-cellular model of 
neuroblastoma by integrating a continuous automaton, 
discrete agents, and a centre-based mechanical model.



Take-Home Message 4.

The multi-cellular model has 20 fitting parameters. We 
calibrated them in a Squid Game–style tournament. We 
used Latin hypercube sampling to generate 3000 
combinations of parameters, aggregated experimental and 
clinical data, and used the data to design 6 in silico studies 
performed on GPUs to assess the combinations.




